登录站点

用户名

密码

AD9268的中文资料

已有 429 次阅读  2010-08-30 19:40   标签中文  资料 

短波全数字传输系统的整体结构

由于短波频段本身范围有限(0~30 MHz),实际使用时往往信号带宽有限,如通信系统在短波频段的典型带宽为6.4 kHz。所以,模拟分机除了变频外,还需要对信号进行窄带滤波处理。

传统的短波接收系统结构是由天线、模拟前端、功率放大器、数字后端等组成,其传统结构如图1所示。

着数字集成芯片和电路设计技术的进步,特别是高速高量化位数的ADC和DAC的成熟、高速SERDES芯片的出现、光纤传输模块和FPGA等数字信号处理芯片的应用,为这些关键技术构建全数字的传输结构提供了基本的支撑。

根据数字系统的能力和特点,使用先进的数字芯片和技术,可以构架一种先进的短波全数字传输结构,图2所示就是一种全数字的传输结构。

图2中,模拟器件和设备的比重大为降低,数字器件基本上都可从天线后介入到系统,保留低噪放器件的目的主要是为了保证接收机合理的噪声系数,同时也提升信号电平,以保证小信号能够被放大到ADC的有效采样电平范围之内。

高速高量化位数的ADC为系统的带内数据采集、系统动态范围和灵敏度提升提供了保证。

ADC后的数字信号可以通过SERDES结构进入光模块,并将其转换为光信号后通过光纤介质进行高速、长距离和低误码率的传输。

FPGA为宽带内的信号处理提供了数字硬件平台,通过成熟的数字信号处理算法和硬件设计技术,就可以轻松的实现数字信号下的信号变频和滤波处理。

2 高速大量化位数的ADC

AD公司(Analog Device)推出的AD9268就是一款可以满足系统需求的高速高量化位数的ADC。

图3所示是AD9268芯片的功能结构框图。该器件对于双路双通道输入信号可以并行进行高速的采样量化,显然,当输入为正交I、Q信号时,它可以在采样率不变的条件下,获得更高的信号无失真带宽。

该器件的数字信号量化数据位为16 bit,同源时钟和信号以差分线的形式输出,从而保证了输出信号优良的信号完整性。

芯片通过SPI接口进行工作模式参数寄存器的配置。值得一提的是,该芯片还提供有多片之间的同步接口,这就为系统进行多通道的信号测向处理做好了伏笔。

AD9268的主要技术指标如表1所列。通过表1可见,该芯片的主要指标十分出色,能够满足复杂信号条件下的信号接收。使用该芯片足以实现系统对短波频段的采样完全覆盖。

AD9268芯片的管脚兼容CMOS/LVDS/LVPECL等电平。模拟、数字均使用1.8 V供电。芯片典型功耗为750 mW,实验室测试最大功耗为875 mW。

3 时钟产生单元

对于光纤通信系统来说,数据时钟的准确性和稳定性是十分重要的,试验证明,它会直接影响信号传输的误码率。ICS8442是由ICS (Inte-grated Circuit Systems,Ine)推出的一款具有很好频综性能的集成芯片。

ICS8442芯片的主要功能是将普通晶振的时钟信号转换为高稳定的差分电平时钟信号。输出频率范围从31.25 MHz~700 MHz。

图4所示是ICS8442的内部结构框图。该芯片可对输入时钟进行相位锁定和频率综合,并可通过控制接口实现不同输出电平制式的切换。

输出频率可通过控制寄存器M、N进行设置,ICS8442使用3.3 V电源,最大功耗为500 mW。

上一篇: 保护电路设计 下一篇: TLl6C754B的中文资料

分享 举报