登录站点

用户名

密码

TTL电平,CMOS电平,232/485电平,OC门,OD门基础知识

2已有 783 次阅读  2011-04-01 13:14   标签基础知识 
TTL电平,CMOS电平,232/485电平,OC门,OD门基础知识

1.RS232电平

或者说串口电平,有的甚至说计算机电平,所有的这些说法,指得都是计算机9针串口 (RS232)的电平,采用负逻辑,

15v ~ 3v 代表1

3v ~ 15v 代表0

2.RS485电平 和 RS422电平

由于两者均采用差分传输(平衡传输)的方式,所以它们的电平方式,一般有两个引脚 A,B

发送端 AB间的电压差

+2 ~ +6v1

-2 ~ -6v0

接收端 AB间的电压差

大于 +200mv  1

小于 -200mv  0

定义逻辑1B>A的状态

定义逻辑0A>B的状态

AB之间的电压差不小于200mv

3.USB

电源线是5V,为USB设备提供最大500mA的电流,它与数据线上的电平无关,数据线是差分信号,通常D+D-+400mV~-400mV间变化。

在传统的单端(Single-ended)通信中,一条线路来传输一个比特位。高电平为1,低电平为0.倘若在数据传输过程中受到干扰,高低电平信号完全可能因此产生突破临界值的大幅度扰动,一旦高电平或低电平信号超出临界值,信号就会出错。在差分传输电路中,输出电平为正电压时表示逻辑1,输出负电压时表示逻辑0,而输出0电压是没有意义的,它既不代表1,也不代表0.而差分通信中,干扰信号会同时进入相邻的两条信号线中,在信号接收端,两个相同的干扰信号分别进入差分放大器的两个反相输入端后,输出电压为0.所以说,差分信号技术对干扰信号具有很强的免疫力。对于串行传输来说,LVDS能够抵御外来干扰;而对于并行传输来说,LVDS不仅可以能够抵御外来干扰,还能抵御数据传输线之间的串扰。因为上述原因,实际电路中只要使用低压差分信号(Low Voltage Differential Signal, LVDS,350mV左右的振幅便能满足近距离传输的要求。假定负载电阻为100欧,采用LVDS方式传输数据时,如果双绞线长度为10m,传输速率可达400Mbps;当电缆长度增加到20m时,速率将为100Mbps;而当电缆长度为100m时,速率只能达到10Mbps左右

4.传输速率

一对一的接头的情况下

RS232   可做到双向传输,全双工通讯  最高传输速率 20kbps;

RS422   只能做到单向传输,半双工通讯,最高传输速率10Mbps;

RS485   双向传输,半双工通讯, 最高传输速率10Mbps;

USB可以自动选择HSHigh-speed,高速,480Mbps)、FSFull-speed,全速,12Mbps)和LSLow-speed,低速,1.5Mbps)三种模式中的一种。

RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。

**********************************************************************

常用的逻辑电平
 
  逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。
 其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。
 5V TTL和5V CMOS逻辑电平是通用的逻辑电平。
 3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。
 低电压的逻辑电平还有2.5V和1.8V两种。 

TTLTransistor-Transistor Logic 三极管逻辑。

Vcc5V

VOH>=2.4VVOL<=0.5V

VIH>=2VVIL<=0.8V

因为2.4V5V之间还有很大空闲,对改善噪声容限并没什么好处,又会白白增大系统功耗,还会影响速度。所以后来就把一部分掉了。也就是后面的LVTTL

LVTTL又分3.3V2.5V以及更低电压的LVTTL(Low Voltage TTL)

3.3V LVTTL

  Vcc3.3V

  VOH>=2.4VVOL<=0.4V

  VIH>=2VVIL<=0.8V

2.5V LVTTL

  Vcc2.5V

  VOH>=2.0VVOL<=0.2V

  VIH>=1.7VVIL<=0.7V

更低的LVTTL不常用就先不讲了。多用在处理器等高速芯片,使用时查看芯片手册就OK了。

TTL使用注意:TTL电平一般过冲都会比较严重,可能在始端串22欧或33欧电阻;TTL电平输入脚悬空时是内部认为是高电平。要下拉的话应用1k以下电阻下拉。TTL输出不能驱动CMOS输入(要加上拉)

CMOSComplementary l Oxide Semiconductor   PMOS+NMOS

Vcc5V

  VOH>=4.45VVOL<=0.5V

  VIH>=3.5VVIL<=1.5V

相对TTL有了更大的噪声容限,输入阻抗远大于TTL输入阻抗。对应3.3V LVTTL,出现了LVCMOS,可以与3.3VLVTTL直接相互驱动。

3.3V LVCMOS

  Vcc3.3V

  VOH>=3.2VVOL<=0.1V

  VIH>=2.0VVIL<=0.7V

2.5V LVCMOS

  Vcc2.5V

  VOH>=2VVOL<=0.1V

  VIH>=1.7VVIL<=0.7V

CMOS使用注意:CMOS结构内部寄生有可控硅结构,当输入或输入管脚高于VCC一定(比如一些芯片是0.7V)时,电流足够大的话,可能引起闩锁效应,导致芯片的烧毁。

ECLEmitter Coupled Logic 发射极耦合逻辑电路(差分结构)

  Vcc=0VVee-5.2V

  VOH=-0.88VVOL=-1.72V

  VIH=-1.24VVIL=-1.36V

速度快,驱动能力强,噪声小,很容易达到几百M的应用。但是功耗大,需要负电源。为简化电源,出现了PECL(ECL结构,改用正电压供电)LVPECL

PECLPseudo/Positive ECL

  Vcc=5V

  VOH=4.12VVOL=3.28V

  VIH=3.78VVIL=3.64V

LVPELCLow Voltage PECL

Vcc=3.3V

  VOH=2.42VVOL=1.58V

  VIH=2.06VVIL=1.94V

ECLPECLLVPECL使用注意:不同电平不能直接驱动。中间可用交流耦合、电阻网络或专用芯片进行转换。以上三种均为射随输出结构,必须有电阻拉到一个直流偏置电压(如多用于时钟的LVPECL:直流匹配时用130欧上拉,同时用82欧下拉;交流匹配时用82欧上拉,同时用130欧下拉。但两种方式工作后直流电平都在1.95V左右。)

前面的电平标准摆幅都比较大,为降低电磁辐射,同时提高开关速度又推出LVDS电平标准。

LVDSLow Voltage Differential Signaling

差分对输入输出,内部有一个恒流源3.5-4mA,在差分线上改变方向来表示01。通过外部的100欧匹配电阻(并在差分线上靠近接收端)转换为±350mV的差分电平。

LVDS使用注意:可以达到600M以上,PCB要求较高,差分线要求严格等长差最好不超过10mil(0.25mm)100欧电阻离接收端距离不能超过500mil,最好控制在300mil以内。

TTL与CMOS区别

CMOS集成电路电源电压可以在较大范围内变化,因而对电源的要求不像TTL集成电路那样严格。用TTL电平他们就可以兼容

  TTL集成电路是电流控制器件。TTL大部分都采用5V电源。
  1.输出高电平Uoh和输出低电平Uol
  Uoh≥2.4V,Uol≤0.4V
  2.输入高电平和输入低电平
  Uih≥2.0V,Uil≤0.8V  
  CMOS
 CMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。CMOS电路的优点是噪声容限较宽,静态功耗很小。
  1.输出高电平Uoh和输出低电平Uol
  Uoh≈VCC,Uol≈GND
  2.输入高电平Uoh和输入低电平Uol
  Uih≥0.7VCC,Uil≤0.2VCC (VCC为电源电压,GND为地)
  从上面可以看出:
  在同样5V电源电压情况下,COMS电路可以直接驱动TTL,因为CMOS的输出高电平大于2.0V,输出低电平小于0.8V;而TTL电路则不能直接 驱动CMOS电路,TTL的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,则CMOS电路就不能检测到高电平,低电平小于0.4V满足要 求,所以TTL电路驱动COMS电路时需要加上拉电阻。如果出现不同电压电源的情况,也可以通过上面的方法进行判断VOL要小于VILVOH要大于VIH,是指一个连接当中的
  如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT(74系列的输入输出在下 面有介绍)的芯片,因为3.3V CMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。


  
电平的上限和下限定义不一样,CMOS具有更大的抗噪区域。

电流驱动能力不一样,ttl一般提供25毫安的驱动能力,而CMOS一般在10毫安左右。

需要的电流输入大小也不一样,一般ttl需要2.5毫安左右,CMOS几乎不需要电流输入。

很多器件都是兼容ttlCMOSdatasheet会有说明。如果不考虑速度和性能,一般器件可以互换。但是需要注意有时候负载效应可能引起电路工作不正常,因为有些ttl电路需要下一级的输入阻抗作为负载才能正常工作。

 

   ++++++++++++++++++++++++++++++++++++
  TTL和CMOS电平
  1、TTL电平(什么是TTL电平):
  输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。
 
  2、CMOS电平:
 1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且具有很宽的噪声容限。
 
  3、电平转换电路:
  因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。
 
  4、OC门 ,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。
 
  5、TTL和COMS电路比较:
 1)TTL电路是电流控制器件,而CMOS电路是电压控制器件。
 2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。
 3)COMS电路的锁定效应:
 COMS电路由于输入太大的电流,内部的电流急剧增大,除非切断电源,电流一直在增大。这种效应就是锁定效应。当产生锁定效应时,COMS的内部电流能达到40mA以上,很容易烧毁芯片。
 防御措施: 1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。
 2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。
 3)在VDD和外电源之间加限流电阻,即使有大的电流也不让它进去。
 4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS路得电 源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。
 
  6、COMS电路的使用注意事项
  1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。
 2)输入端接低内阻的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之内。
 3)当接长信号传输线时,在COMS电路端接匹配电阻。
 4)当输入端接大电容时,应该在输入端和电容间接保护电阻。电阻值为R=V0/1mA.V0是外界电容上的电压。
 5)COMS的输入电流超过1mA,就有可能烧坏COMS。
 
  7、TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理):
  1)悬空时相当于输入端接高电平。因为这时可以看作是输入端接一个无穷大的电阻。
 2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。因为由TTL门电路的输入端负载特性可知,只有在输入端接的串 联电阻小于910欧 时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。这个一定要注意。COMS门电路就不用考虑这些了。
 
  8、TTL电路有集电极开路OC门 ,MOS管也有和集电极对应的漏极开路的OD门,它的输 出就叫做开漏输出。OC门在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢?那是因为当三极管截止的时候,它的基极电流约等于0,但是并不是真正的 为0,经过三极管的集电极的电流也就不是真正的 0,而是约0。而这个就是漏电流。
  开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。它可以吸收很大的电流,但是不能向外输出的电流。所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。OD门一般作为输出缓冲/驱动器、电平转换器以及满足吸收大负载电流的需要。
 
  9、什么叫做图腾柱,它与开漏电路有什么区别?
 TTL集成电路中,输出有接上拉三极管的输出叫做图腾柱输出,没有的叫做OC门。因为TTL就是一个三级关,图腾柱也就是两个三级管推挽相连。所以推挽就是图腾。一般图腾式输出,高电平400UA,低电平8MA
 
  +++++++++++++++++++++++++++++++++++++++++++
 
  CMOS 器件不用的输入端必须连到高电平或低电平, 这是因为 CMOS 是高输入阻抗器件, 理想状态是没有输入电流的. 如果不用的输入引脚悬空, 很容易感应到干扰信号, 影响芯片的逻辑运行, 甚至静电积累永久性的击穿这个输入端, 造成芯片失效.
  另外, 只有 4000 系列的 CMOS 器件可以工作在15伏电源下, 74HC, 74HCT 等都只能工作在 5伏电源下, 现在已经有工作在 3伏和 2.5伏电源下的 CMOS 逻辑电路芯片了.
 
  CMOS电平和TTL电平:
 CMOS逻辑电平范围比较大,范围在3~15V,比如4000系列当5V供电时,输出在4.6以上为高电平,输出在0.05V以下为低电平。输入在3.5V以上为高电平,输入在1.5V以下为低电平。
  而对于TTL芯片,供电范围在0~5V,常见都是5V,如74系列5V供电,输出在2.7V以上为高电平,输出在 0.5V以下为低电平,输入在2V以上为高电平,在0.8V以下为低电平。因此,CMOS电路与 TTL电路就有一个电平转换的问题,使两者电平域值能匹配。
  有关逻辑电平的一些概念 :
  要了解逻辑电平的内容,首先要知道以下几个概念的含义:
 
  输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。
 输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。
 输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。
 输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。
 阀值电平(Vt):数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。它是一个界于Vil、Vih之间的电压值,对于CMOS电路 的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输 出,则必须要求输入高电平> Vih,输入低电平<Vil,而如果输入电平在阈值上下,也就是Vil~Vih这个区域,电路的输出会处于不稳定状态。
 对于一般的逻辑电平,以上参数的关系如下:
 Voh > Vih > Vt > Vil > Vol
 Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。
 Iol:逻辑门输出为低电平时的负载电流(为灌电流)。
 Iih:逻辑门输入为高电平时的电流(为灌电流)。
 Iil:逻辑门输入为低电平时的电流(为拉电流)。
 
  门电路输出极在集成单元内不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、 漏极开路(OD)、发射极开路(OE),使用时应审查是否接上拉电阻(OC、OD门)或下拉电阻(OE门),以及电阻阻值是否合适。对于集电极开路 (OC)门,其上拉电阻阻值RL应满足下面条件:
  (1):RL < (VCC-Voh)/(n*Ioh+m*Iih)
  (2):RL > (VCC-Vol)/(Iol+m*Iil)
  其中n:线与的开路门数;m:被驱动的输入端数。
  
 ++++++++++++++++++++++++++++
 
  OC门,又称集电极开路(漏极开路)与非门门电路,Open Collector(Open Drain)。
  为什么引入OC门?
  实际使用中,有时需要两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据(状态电平)用同一条导线输送出去。因此,需要一种新的与非门电路--OC门来实现“线与逻辑”。
  OC门主要用于3个方面:
 
  实现与或非逻辑,用做电平转换,用做驱动器。由于OC门电路的输出管的集电极悬空,使用时需外接一个上拉电阻Rp到电源VCC。OC门使用上拉电阻以输 出高电平,此外为了加大输出引脚的驱动能力,上拉电阻阻值的选择原则,从降低功耗及芯片的灌电流能力考虑应当足够大;从确保足够的驱动电流考虑应当足够 小。
 线与逻辑,即两个输出端(包括两个以上)直接互连就可以实现“AND”的逻辑功能。在总线传输等实际应用中需要多个门的输出端并联连接使用,而一般 TTL门输出端并不能直接并接使用,否则这些门的输出管之间由于低阻抗形成很大的短路电流(灌电流),而烧坏器件。在硬件上,可用OC门或三态门(ST 门)来实现。 用OC门实现线与,应同时在输出端口应加一个上拉电阻。
 三态门(ST门)主要用在应用于多个门输出共享数据总线,为避免多个门输出同时占用数据总线,这些门的使能信号(EN)中只允许有一个为有效电平(如高 电平),由于三态门的输出是推拉式的低阻输出,且不需接上拉(负载)电阻,所以开关速度比OC门快,常用三态门作为输出缓冲器。
 +++++++++++++++++++++++++++++++++++++
  什么是OC、OD?
 集电极开路门(集电极开路 OC 或漏极开路 OD)
  Open-Drain是漏极开路输出的意思,相当于集电极开路(Open-Collector)输出,即TTL中的集电极开路(OC)输出。一般用于线或、线与,也有的用于电流驱动。
  Open-Drain是对MOS管而言,Open-Collector是对双极型管而言,在用法上没啥区别。
  开漏形式的电路有以下几个特点:
  a. 利用外部电路的驱动能力,减少IC内部的驱动。 或驱动比芯片电源电压高的负载.
  b.可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线 判断总线占用状态的原理。如果作为图腾输出必须接上拉电阻。接容性负载时,下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度 慢。如果要求速度高电阻选择要小,功耗会大。所以负载电阻的选择要兼顾功耗和速度。
  c. 可以利用改变上拉电源的电压,改变传输电平。例如加上上拉电阻就可以提供TTL/CMOS电平输出等。
  d. 开漏Pin不连接外部的上拉电阻,则只能输出低电平。一般来说,开漏是用来连接不同电平的器件,匹配电平用的。
  正常的CMOS输出级是上、下两个管子,把上面的管子去掉就是OPEN-DRAIN了。这种输出的主要目的有两个:电平转换和线与。
  由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。这样你就可以进行任意电平的转换了。
  线与功能主要用于有多个电路对同一信号进行拉低操作的场合,如果本电路不想拉低,就输出高电平,因为OPEN-DRAIN上面的管子被拿掉,高电平是靠外接的上拉电阻实现的。(而正常的CMOS输出级,如果出现一个输出为高另外一个为低时,等于电源短路。)
  OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出 

上一篇: stm32应用例程 下一篇: 转]运放中offest,drift,bias的精辟解释

分享 举报

发表评论 评论 (1 个评论)

  • chenjl 2011-04-02 15:16
    好东西啊,很多的概念在学习的时候都没接触过:(
涂鸦板