登录站点

用户名

密码

ad607中文资料2—-参数及工作原理 | 2009-8-12 11:09:00

已有 216 次阅读  2009-09-04 15:01

引脚说明与极限参数

2.1 引脚说明

    AD607采用20脚SSOP封装,封装外形图如图1所示。表1所列为其引脚功能描述。

2.2 极限参数

    ●电源电压:VPS1、VPS2:5.5V;

    ●内部功耗:600mW;

    ●工作温度范围:(采用2.7V~5.5V电源时)-25℃~+85℃;工作温度范围(采用4.5V~5.5V电源时)-40℃~+85℃;

    ●存储温度范围:+65℃~+150℃;

    ●引脚温度(焊接60秒):300℃

3 工作原理

    AD607提供了实现完整的低功耗,单变频接收机或双变频接收机所需的大部分电路,其输入频率最大为500MHz,中频输入为400kHz到12MHz。内部I/Q解调器和相应的锁相环路可提供载波恢复,并支持多种调制模式,包括n-PSK,n-QAM和AM。在中等增益时,使用3V的单电源(最小 2.7V,最大5.5V)的典型电流消耗为8.5mA。

图2所示为AD607的功能框图。它包含了一个可变增益UHF混频器和线性四级IF放大器,可提供的电压控制增益范围大于90bB。混频级后是双解调器,各包含一个乘法器,后接一个双极点 2MHz的低通滤波器,由一锁相环路驱动,该锁相环路同时提供同相和正交时钟。芯片还包含有内部的AGC检测器,温度稳定增益控制系统用于提供准确的 RSSI输出。另外,AD607芯片还具有与CMOS兼容的功耗控制偏置系统。

 

3.1 混频器

    UHF混频器采用改进型的Gilbert类型单元设计,可在低频到500MHz的频率范围内工作。混频器输入端动态范围的高端由RFHI和RFLO间的最大输入信号电平确定,而低端则由噪声电平确定。

    混频器的射频输入端是差分的,因此RFLO端和RFHI端在功能上是完全相同的,这些节点在内部予以偏置,一般假定RFLO交流耦合到地。RF端口可建模为并联RC电路,如图3所示。

    MXOP端的最大可能电平由电压和电流限制共同决定。使用3V的电源和VMID=1.5V时,最大摆幅为±1.3V。为在负载为165Ω的标准滤波器中得到±1V的电压摆幅,需要的峰值驱动电流是±6mA。但是电压和电流的下限不应与混频器增益相混淆。在实际系统中,AGC电压将决定混频增益,从而决定IF输入端IFHI脚的信号电平,它总是小于±56mV,这是IF放大器的线性范围限制的结果。

3.2 RSSI的增益定标

    AD607的总增益以分贝表示时,相对于GAIN/RSSI端的AGC电压VG是线性的。当VG为零时,所有单元的增益为零。各级的增益是并行变化的。 AD607内含增益定标的温度补偿电路。当增益由外部控制时,GAIN/RSSI端是MGC输入;当使用内部的AGC检测器时,GAIN/RSSI端是 RSSI输出。

    增益控制定标因子正比于施加在脚GREF端的参考电压。当该脚连接到电源的中点时,标度是20mV/dB(VP=3V)。在这些条件下,增益的低80dB对应的控制电压为0.4V<VG<2.0V。

    另外,GREF端还可连接到外部电压参考VR上,使用AD1582或AD1580作电压参考可以提供与电源无关的增益标度,当使用AD7013和AD7015基带转换器时,外部参考也可由基带转换器的参考输出提供,如图4所示

上一篇: 保护电路设计 下一篇: AP89010工作原理 | 2009-8-14 8:34:00

分享 举报